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Introduction
°

Information Security

@ Information security :
e Confidentiality
o Integrity
e Availability
@ Traditionally, dissemination of information is prevented

through Access control :
o Deals with what piece of information can be accessed? by

whom?
o Yet, is this piece of information handled correctly when

accessed?
@ Information Flow Control :

e Tracks how information is propagated through a program
o Verifies that information flows are secure with respect to a

security policy



Information Flow
®00

Pervasive Flows

’ public := false ‘
1
’ if (secret > x) ‘

public := true skip

print public

@ from conditional expressions to variables assigned inside
conditionals

@ An implicit flow from variable secret to variable public

o Detected by [Volpano et al.,96], [Amtoft & Banerjee,04], [Hunt &
Sands,06], [Jif], [Flow Caml], [Le Guernic et al.,06] ...
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Pervasive Flows

’ public := false ‘
1
’ if (secret > x) ‘

public := true
= y+1 y (= y+1

@ No information flow from variable secret to variable y

e Static analysis by abstract interpretation of self-composed
programs [Kovécs et al.,13], [Miiller et al.,15]
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Pervasive Flows

’ public := true ‘
1
’ if (secret > x) ‘

public := true
= y+1 y (= y+1

print public

@ No information flow from variable secret to variable y

o No information flow from variable secret to variable public

e Hybrid monitoring by relying on complex static analyses of
non-executed branches [Besson et al.,13], [Besson et al.,16]



Information Flow
°

Goals

@ How do we account for information leaks, without rejecting
too many secure programs?

e More reasoning on program semantics?
Abstract interpretation!

@ This talk : Monitoring information flow as calculational
abstract interpretation
Follow up on monitoring as abstract interpretation [Chudnov et al.,14]
e Systematic design and derivation of information flow monitors

o Leveraging a large body of the literature in abstract
interpretation, since seminal papers [Cousots, 77 & 79]

e Semantic characterization of information flow monitors as a
starting point



Monitoring

@00

Ideal Monitor

@ Termination-Insensitive Non-Interference:
PUBL/C,'nput PUBL/Coutput
SECRETinput SECREToutput
PUBL/C,‘,,put I 'DUBLICoutput
SECRET’/”PUt SECRETéutput

e A pre/post relational logic formulation: [Benton,04]
For any two input memories, agreement over “Public inputs”

leads to agreement over “Public outputs” for the output
memories

assume A Publicinpyt; € ; assert APublicoutput
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Ideal Monitor

@ Termination-Insensitive Non-Interference:

PUBLICinput I PUBLICoutput

SECRET pue SECRE Toutpur

PUBLIC,‘nput :-: PUBLICOUthJt

SECRET], SECRET!

input output

e A pre/post relational logic formulation: [Benton,04]
For any two input memories, agreement over “Public inputs”
leads to agreement over “Public outputs” for the output
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assume A Publicinpyt; € ; assert APublicoutput
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Ideal Monitor

assume Apublic;

assert Aoutputs
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Ideal Monitor

Major execution

publictsecret™® .-

assume Apublic;

assert Aoutputs
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Monitoring
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Ideal Monitor

Major execution Minor executions

pub/iclsecrethy " publictsecret?®® public*secret3®

““public®secret!! | public3secret®

assume Apublic;

assert Aoutputs

@ Monitor either returns result of major execution, or withholds
result if assert command fails 4
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Ideal Monitor

o Ideal monitor: a simultaneous execution of the program on a
major state, and a tracking set (all — relevant — minor states)

[c] € States — States, (c)s € P(States) — P(States)

P(States) B P(States)
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A Primer on Abstract Interpretation

@ Pick an abstraction &7

@ Give abstract objects a € &/ a meaning by linking them to
concrete obJects ¢ € % through a Galois connection:
(¢,C) & («,CH)

o Best apprOX|mat|on of a transformer f € € — % given by :
aofoyeod = of
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A Primer on Abstract Interpretation

@ Pick an abstraction &7

@ Give abstract objects a € &/ a meaning by linking them to
concrete obJects ¢ € % through a Galois connection:
(¢,C) & («,CH)

o Best apprOX|mat|on of a transformer f € € — % given by :
aofoyeod = of

Let ¥ to be a powerset of reachable states, and &/ be a powerset
of parity predicates on variables:

a o {x:=y+1[} o y(Even y)
= a o {x:=y+1}( {o € States | o(y) is even} )
= a({o[x = o(y) + 1] € States | o(y) is even} )
= {Even y, Odd x}
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A Primer on Abstract Interpretation

@ Assuming a Galois connection: (P(States), Q) % (o, CF)

@ Best approximation of static collecting semantics
{c} € P(States) — P(States) given by : avo {c[ o~

ao{]cﬁoﬂ

//

P(States) —> P(States)
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A Primer on Abstract Interpretation

@ Assuming a Galois connection: (P(States), Q) % (o, CF)
@ Best approximation of static collecting semantics
{c} € P(States) — P(States) given by : avo {c[ o~
{ch*

UI

ao{]cﬁoﬂ

//

P(States) —> P(States)
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Monitoring as Calculational Abstract Interpretation

@ Pick an abstraction: relational formulas

@ Define a Galois connection interpreting relational formula:
Monitoring wrt. a major state means that the abstraction
should be interpreted wrt. a major state o € States:

vs(Ax) £ {7 € States | 7(x) = o(x)}

(X)) = {0 |Vrex, 7|0 o}

P(States) — (States)
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Monitoring as Calculational Abstract Interpretation

P(States) B — P(States)
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@ Galois connections indexed by major states o € States
Yo

(P(States), C) = (P(L), &)

P(L) : sets of relational formulas interpreted conjunctively
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Monitoring as Calculational Abstract Interpretation

P(States) B — P(States)

@ Galois connections indexed by major states o € States
Yo

(P(States), C) & (P(L), )

P(L) : sets of relational formulas interpreted conjunctively



Monitoring as Calculational Abstract Interpretation

Monitoring
[e1eY o]

Let o/ = [if b then ¢; else c;]o and observe:

o, o (if b then ¢ else ), 0 7,
consider case [b]o =1, so ¢/ = [c1]o
agr o ((c1)o o grd2 o v, U {caff o grd ™ o 4,)
Galois: « preserve joins
Ay o (cr)g o grdg o ve LU agr o {0 grd™ o,
Galois: id C* v, o ay
g o (c1)g o Vo 0 ag o grdg ° Yo
L agr o el ove o ag o grd ™o Yo
by ind hyp: ay © (c1)e © Vo EF (c1)?
(lcll)g ° Qg © grdg ° Yo
L O‘G’O{ICZD’O'YUOQUOgrd_‘bO’YJ
posit a sound static analysis: o, © el 0 7, C {caf!
(e o ag o grdg o o U {ealff o ag o grd™ o5,
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Monitoring as Calculational Abstract Interpretation

@ A specification from which a tractable monitor is derived
through the calculational framework of abstract interpretation
[Cousots, 77, 79 & 99]

01 © (o © 7 EF (),

@ Structural induction, standard derivation for most commands

@ Design choices for the static part of the monitor in the case of
“high branches:

o Always top: simulating a purely dynamic monitor forgetting all
formulas [Besson et al.,13]

o Modified variables: forgetting relational formulas that may be
falsified [Le Guernic et al.,07] [Russo & Sabelfeld,10]

o Interval analysis: inferring new relational formulas by
leveraging actual values
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Example Program Reloaded

public := true

‘ if (secret > 10) ‘

/ lse

public := true
y :=y+1 y/:*y{l

‘ print publlcy ‘

@ Interval analysis of non-executed branch determines that:
e variable public is equal to true
e variable y is incremented by 1
@ Comparison with major state after conditional determines :
o all minor states agree with the major state on the value of
both variables public and y

e Formalised through a reduced product [Cousots, 79], providing
an interface between relational formulas and intervals
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agro(c)oovs

P(L) @ o

P(States) — b P(States)

@ Exploring more systematically the design space of information
flow monitors

o Better precision, more subtle policies, richer languages, less
overhead . ..
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Sweet spot performance/precision?

pg = {A, Mod, Interval, Polyhedra, Symbolic}

if (secret == public)

pg = {A, Mod, Interval, Polyhedra, Symbolic} e/se /»i {Mod, Interval, Polyhedra, Symbolic}

a @
’ o
p? = {A, Interval, Polyhedra, Symbolic}\“% {Mod, Interval, Polyhedra, Symbolic}
print public

’ ’
redur:e(pi1 ut pg )

@ Trade-off performance and precision during the monitoring
process
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From Static to Dynamic, and Back

g o(c)oove

P(£)

P(States) —a (States)

@ Exploring more systematically the design space of information
flow monitors

o Better precision, more subtle policies, richer languages, less
overhead . ..
@ Hand in hand with semantic-based static analysis of security
requirements by calculational abstract interpretation
[arxiv.org/abs/1608.01654, to appear’'17]
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From Static to Dynamic, and Back

g o(c)oove

P(L) ® o

P(States) —a (States)

@ Exploring more systematically the design space of information
flow monitors

o Better precision, more subtle policies, richer languages, less
overhead . ..
@ Hand in hand with semantic-based static analysis of security
requirements by calculational abstract interpretation
[arxiv.org/abs/1608.01654, to appear’'17]
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From Static to Dynamic, and Back

Questions? )
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