Introduction O	Information Flow 0000	Monitoring 000000000	Discussion 0000

Calculational Design of Information Flow Monitors

Mounir Assaf David Naumann

Stevens Institute of Technology, Hoboken, NJ

November 9th, 2016 SoSySec Seminar, Rennes

Introduction	Information Flow	Monitoring	Discussion
•			
Information Security			

- Information security :
 - Confidentiality
 - Integrity
 - Availability
- Traditionally, dissemination of information is prevented through Access control :
 - Deals with what piece of information can be accessed? by whom?
 - Yet, is this piece of information handled correctly when accessed?
- Information Flow Control :
 - Tracks how information is propagated through a program
 - Verifies that **information flows** are secure with respect to a security policy

Implicit flows

- from conditional expressions to variables assigned inside conditionals
- An implicit flow from variable secret to variable public
 - Detected by [Volpano et al.,96], [Amtoft & Banerjee,04], [Hunt & Sands,06], [Jif], [Flow Caml], [Le Guernic et al.,06] ...

- No information flow from variable secret to variable y
 - Static analysis by abstract interpretation of self-composed programs [Kovács et al.,13], [Müller et al.,15]

- No information flow from variable secret to variable y
- No information flow from variable secret to variable public
 - Hybrid monitoring by relying on complex static analyses of non-executed branches [Besson et al.,13], [Besson et al.,16]

Introduction	Information Flow	Monitoring	Discussion
	0000		
Goals			

- How do we account for information leaks, without rejecting too many secure programs?
 - More reasoning on program semantics? Abstract interpretation!
- This talk : Monitoring information flow as calculational abstract interpretation

Follow up on monitoring as abstract interpretation [Chudnov et al.,14]

- Systematic design and derivation of information flow monitors
- Leveraging a large body of the literature in abstract interpretation, since seminal papers [Cousots,77 & 79]
- Semantic characterization of information flow monitors as a starting point

• A pre/post relational logic formulation: [Benton,04] For any two input memories, agreement over "Public inputs" leads to agreement over "Public outputs" for the output memories

```
assume \mathbb{A}Public_{input}; c ; assert \mathbb{A}Public_{output}
```


• A pre/post relational logic formulation: [Benton,04] For any two input memories, agreement over "Public inputs" leads to agreement over "Public outputs" for the output memories

```
assume \mathbb{A}Public_{input}; c ; assert \mathbb{A}Public_{output}
```


Introduction	Information Flow	Monitoring	Discussion
O	0000	⊙⊙●○○○○○○○	0000
Ideal Monitor			

 Ideal monitor: a simultaneous execution of the program on a major state, and a *tracking set* (all – relevant – minor states)

 $\llbracket c \rrbracket \in \mathsf{States} \to \mathsf{States}, \qquad \llbracket c \rrbracket_\sigma \in \mathcal{P}(\mathsf{States}) \to \mathcal{P}(\mathsf{States})$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

 $\gamma(\mathsf{Even} \; \mathsf{y}) \ \{\sigma \in \mathsf{States} \mid \sigma(\mathsf{y}) \; \mathsf{is even} \}$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

 $\alpha \circ \{ x:=y+1 \} \circ \gamma(\mathsf{Even } y)$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

$$\begin{split} \alpha &\circ \{\!\!\! \{ \mathsf{x} := \mathsf{y} + 1 \}\!\!\!\} \circ \gamma(\mathsf{Even y}) \\ &= \alpha \circ \{\!\!\! \{ \mathsf{x} := \mathsf{y} + 1 \}\!\!\!\} (\{ \sigma \in \mathsf{States} \mid \sigma(y) \text{ is even} \}) \end{split}$$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

$$\begin{split} \alpha \circ \{ x := y+1 \} \circ \gamma(\mathsf{Even } y) \\ &= \alpha \circ \{ x := y+1 \} (\{ \sigma \in \mathsf{States} \mid \sigma(y) \text{ is even} \}) \\ &= \alpha (\{ \sigma[x \mapsto \sigma(y)+1] \in \mathsf{States} \mid \sigma(y) \text{ is even} \}) \end{split}$$

Introduction	Information Flow	Monitoring	Discussion
		00000000	
A Primer on Abstract Interpretation			

- Pick an abstraction \mathscr{A}
- Give abstract objects a ∈ A a meaning by linking them to concrete objects c ∈ C through a Galois connection:
 (C, ⊆) ← (A, ⊑[‡])
- Best approximation of a transformer $f \in \mathscr{C} \to \mathscr{C}$ given by : $\alpha \circ f \circ \gamma \in \mathscr{A} \to \mathscr{A}$

$$\begin{aligned} \alpha \circ \{\!\!\{ \mathbf{x} := \mathbf{y} + \mathbf{1} \}\!\} \circ \gamma(\mathsf{Even } \mathbf{y}) \\ &= \alpha \circ \{\!\!\{ \mathbf{x} := \mathbf{y} + \mathbf{1} \}\!\} \left(\{ \sigma \in \mathsf{States} \mid \sigma(\mathbf{y}) \text{ is even} \} \right) \\ &= \alpha \left(\{ \sigma[\mathbf{x} \mapsto \sigma(\mathbf{y}) + \mathbf{1}] \in \mathsf{States} \mid \sigma(\mathbf{y}) \text{ is even} \} \right) \\ &= \{ \mathit{Even } \mathbf{y}, \mathit{Odd } \mathbf{x} \} \end{aligned}$$

Introduction	Information Flow	Monitoring	Discussion	
		00000000		
A Primer on Abstract Interpretation				

- Assuming a Galois connection: $(\mathcal{P}(\mathsf{States}), \subseteq) \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} (\mathscr{A}, \sqsubseteq^{\sharp})$
- Best approximation of static collecting semantics $\{c\} \in \mathcal{P}(\text{States}) \rightarrow \mathcal{P}(\text{States})$ given by : $\alpha \circ \{c\} \circ \gamma$

Introduction O	Information Flow 0000	Monitoring ○○○○●○○○○○	Discussion 0000
A Primer on Abstract Interp	pretation		

- Assuming a Galois connection: $(\mathcal{P}(\mathsf{States}), \subseteq) \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} (\mathscr{A}, \sqsubseteq^{\sharp})$
- Best approximation of static collecting semantics $\{c\} \in \mathcal{P}(\text{States}) \rightarrow \mathcal{P}(\text{States})$ given by : $\alpha \circ \{c\} \circ \gamma$

Monitoring as Calculational Abstract Interpretation

- Pick an abstraction: relational formulas
- Define a Galois connection interpreting relational formula: Monitoring wrt. a major state means that the abstraction should be interpreted wrt. a major state σ ∈ States:

$$\gamma_{\sigma}(\mathbb{A}x) \triangleq \{ \tau \in \mathsf{States} \mid \tau(x) = \sigma(x) \}$$

$$\alpha_{\sigma}(\mathbf{\Sigma}) \triangleq \{ \Phi \mid \forall \tau \in \mathbf{\Sigma}, \tau \mid \sigma \models \Phi \}$$

Introduction	Information Flow	Monitoring	Discussion
		0000000000	
Monitoring as Calculational Abstract Interpretation			

Introduction	Information Flow	Monitoring	Discussion
O	0000		0000
Monitoring as Calculational Abstract Interpretation			

Introduction	Information Flow	Monitoring	Discussion
O	0000		0000
Monitoring as Calculational Abstrac	t Interpretation		

Introduction	Information Flow	Monitoring	Discussion
O	0000	○○○○○○○○○	0000
Monitoring as Calculational Abstrac	t Interpretation		

Introduction	Information Flow	Monitoring	Discussion
O	0000	○○○○○●○○○	0000
Monitoring as Calculational Abstrac	t Interpretation		

Introduction Information Flow Monitoring Monitoring as Calculational Abstract Interpretation Let $\sigma' = [\mathbf{if} \ b \ \mathbf{then} \ c_1 \ \mathbf{else} \ c_2] \sigma$ and observe: $\alpha_{\sigma'} \circ (\text{if } b \text{ then } c_1 \text{ else } c_2)_{\sigma} \circ \gamma_{\sigma}$ consider case $\llbracket b \rrbracket \sigma = 1$, so $\sigma' = \llbracket c_1 \rrbracket \sigma$ $\alpha_{\sigma'} \circ (\|c_1\|_{\sigma} \circ \operatorname{grd}_{\sigma}^b \circ \gamma_{\sigma} \sqcup \|c_2\| \circ \operatorname{grd}^{\neg b} \circ \gamma_{\sigma})$ Galois: α preserve joins = $\alpha_{\sigma'} \circ (|c_1|)_{\sigma} \circ \operatorname{grd}_{\sigma}^b \circ \gamma_{\sigma} \quad \sqcup^{\sharp} \quad \alpha_{\sigma'} \circ \{|c_2|\} \circ \operatorname{grd}^{\neg b} \circ \gamma_{\sigma}$ \Box^{\sharp} Galois: *id* $\Box^{\sharp} \gamma_{\sigma} \circ \alpha_{\sigma}$ $\alpha_{\sigma'} \circ (c_1)_{\sigma} \circ \gamma_{\sigma} \circ \alpha_{\sigma} \circ \operatorname{grd}_{\sigma}^b \circ \gamma_{\sigma}$ $\sqcup^{\sharp} \quad \alpha_{\sigma'} \circ \{c_2\} \circ \gamma_{\sigma} \circ \alpha_{\sigma} \circ \operatorname{grd}^{\neg b} \circ \gamma_{\sigma}$ \Box^{\sharp} by ind hyp: $\alpha_{\sigma'} \circ (c_1)_{\sigma} \circ \gamma_{\sigma} \sqsubset^{\sharp} (c_1)_{\sigma}^{\sharp}$ $(c_1)_{\sigma}^{\sharp} \circ \alpha_{\sigma} \circ \operatorname{grd}_{\sigma}^{b} \circ \gamma_{\sigma}$ $\sqcup^{\sharp} \quad \alpha_{\sigma'} \circ \{ c_2 \} \circ \gamma_{\sigma} \circ \alpha_{\sigma} \circ \operatorname{grd}^{\neg b} \circ \gamma_{\sigma}$ \Box^{\sharp} posit a sound static analysis: $\alpha_{\sigma'} \circ \{c_2\} \circ \gamma_{\sigma} \stackrel{:}{\sqsubset} \{c_2\}^{\sharp}$ $\|c_1\|_{\pi}^{\sharp} \circ \alpha_{\sigma} \circ \operatorname{grd}_{\sigma}^{b} \circ \gamma_{\sigma} \sqcup^{\sharp} \|c_2\|^{\sharp} \circ \alpha_{\sigma} \circ \operatorname{grd}^{\neg b} \circ \gamma_{\sigma}$

Introduction	Information Flow	Monitoring	Discussion
		0000000000	
Monitoring as Calculational Abstract Interpretation			

• A specification from which a tractable monitor is derived through the calculational framework of abstract interpretation [Cousots, 77, 79 & 99]

$$\alpha_{\sigma'} \circ (\!(\boldsymbol{c})\!)_{\sigma} \circ \gamma_{\sigma} \stackrel{.}{\sqsubseteq}^{\sharp} (\!(\boldsymbol{c})\!)_{\sigma}^{\sharp}$$

- Structural induction, standard derivation for most commands
- Design choices for the static part of the monitor in the case of "high branches":
 - Always top: simulating a purely dynamic monitor forgetting all formulas [Besson et al.,13]
 - Modified variables: forgetting relational formulas that may be falsified [Le Guernic et al.,07] [Russo & Sabelfeld,10]
 - Interval analysis: inferring new relational formulas by leveraging actual values

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - ${\scriptstyle \bullet} \,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

- Interval analysis of non-executed branch determines that:
 - variable public is equal to true
 - $\bullet\,$ variable y is incremented by 1
- Comparison with major state after conditional determines :
 - all minor states agree with the major state on the value of both variables public and y
 - Formalised through a reduced product [Cousots, 79], providing an interface between relational formulas and intervals

Introduction	Information Flow	Monitoring	Discussion
O	0000	000000000	

Future work

- Exploring more systematically the design space of information flow monitors
 - Better precision, more subtle policies, richer languages, less overhead . . .

$$\mathit{reduce}(\rho_1^{\sharp'} \sqcup^{\sharp} \rho_2^{\sharp'})$$

 $\mathit{reduce}(\rho_1^{\sharp'} \sqcup^{\sharp} \rho_2^{\sharp'})$

 $\mathit{reduce}(\rho_1^{\sharp'} \sqcup^{\sharp} \rho_2^{\sharp'})$

Future work

- Exploring more systematically the design space of information flow monitors
 - Better precision, more subtle policies, richer languages, less overhead . . .
- Hand in hand with semantic-based static analysis of security requirements by calculational abstract interpretation [arxiv.org/abs/1608.01654, to appear'17]

Future work

- Exploring more systematically the design space of information flow monitors
 - Better precision, more subtle policies, richer languages, less overhead ...
- Hand in hand with semantic-based static analysis of security requirements by calculational abstract interpretation [arxiv.org/abs/1608.01654, to appear'17]

Introduction	Information Flow	Monitoring	Discussion
			0000
From Static to Dynamic, and Back			

Questions? :)